DeepInfra
tip
We support ALL DeepInfra models, just set model=deepinfra/<any-model-on-deepinfra>
as a prefix when sending litellm requests
API Key​
# env variable
os.environ['DEEPINFRA_API_KEY']
Sample Usage​
from litellm import completion
import os
os.environ['DEEPINFRA_API_KEY'] = ""
response = completion(
model="deepinfra/meta-llama/Llama-2-70b-chat-hf",
messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}]
)
Sample Usage - Streaming​
from litellm import completion
import os
os.environ['DEEPINFRA_API_KEY'] = ""
response = completion(
model="deepinfra/meta-llama/Llama-2-70b-chat-hf",
messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}],
stream=True
)
for chunk in response:
print(chunk)
Chat Models​
Model Name | Function Call |
---|---|
meta-llama/Meta-Llama-3-8B-Instruct | completion(model="deepinfra/meta-llama/Meta-Llama-3-8B-Instruct", messages) |
meta-llama/Meta-Llama-3-70B-Instruct | completion(model="deepinfra/meta-llama/Meta-Llama-3-70B-Instruct", messages) |
meta-llama/Llama-2-70b-chat-hf | completion(model="deepinfra/meta-llama/Llama-2-70b-chat-hf", messages) |
meta-llama/Llama-2-7b-chat-hf | completion(model="deepinfra/meta-llama/Llama-2-7b-chat-hf", messages) |
meta-llama/Llama-2-13b-chat-hf | completion(model="deepinfra/meta-llama/Llama-2-13b-chat-hf", messages) |
codellama/CodeLlama-34b-Instruct-hf | completion(model="deepinfra/codellama/CodeLlama-34b-Instruct-hf", messages) |
mistralai/Mistral-7B-Instruct-v0.1 | completion(model="deepinfra/mistralai/Mistral-7B-Instruct-v0.1", messages) |
jondurbin/airoboros-l2-70b-gpt4-1.4.1 | completion(model="deepinfra/jondurbin/airoboros-l2-70b-gpt4-1.4.1", messages) |