VertexAI [Anthropic, Gemini, Model Garden]
🆕 vertex_ai_beta/
route​
New vertex_ai_beta/
route. Adds support for system messages, tool_choice params, etc. by moving to httpx client (instead of vertex sdk).
from litellm import completion
import json
## GET CREDENTIALS
file_path = 'path/to/vertex_ai_service_account.json'
# Load the JSON file
with open(file_path, 'r') as file:
vertex_credentials = json.load(file)
# Convert to JSON string
vertex_credentials_json = json.dumps(vertex_credentials)
## COMPLETION CALL
response = completion(
model="vertex_ai_beta/gemini-pro",
messages=[{ "content": "Hello, how are you?","role": "user"}],
vertex_credentials=vertex_credentials_json
)
System Message​
from litellm import completion
import json
## GET CREDENTIALS
file_path = 'path/to/vertex_ai_service_account.json'
# Load the JSON file
with open(file_path, 'r') as file:
vertex_credentials = json.load(file)
# Convert to JSON string
vertex_credentials_json = json.dumps(vertex_credentials)
response = completion(
model="vertex_ai_beta/gemini-pro",
messages=[{"content": "You are a good bot.","role": "system"}, {"content": "Hello, how are you?","role": "user"}],
vertex_credentials=vertex_credentials_json
)
Function Calling​
Force Gemini to make tool calls with tool_choice="required"
.
from litellm import completion
import json
## GET CREDENTIALS
file_path = 'path/to/vertex_ai_service_account.json'
# Load the JSON file
with open(file_path, 'r') as file:
vertex_credentials = json.load(file)
# Convert to JSON string
vertex_credentials_json = json.dumps(vertex_credentials)
messages = [
{
"role": "system",
"content": "Your name is Litellm Bot, you are a helpful assistant",
},
# User asks for their name and weather in San Francisco
{
"role": "user",
"content": "Hello, what is your name and can you tell me the weather?",
},
]
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
}
},
"required": ["location"],
},
},
}
]
data = {
"model": "vertex_ai_beta/gemini-1.5-pro-preview-0514"),
"messages": messages,
"tools": tools,
"tool_choice": "required",
"vertex_credentials": vertex_credentials_json
}
## COMPLETION CALL
print(completion(**data))
JSON Schema​
from litellm import completion
## GET CREDENTIALS
file_path = 'path/to/vertex_ai_service_account.json'
# Load the JSON file
with open(file_path, 'r') as file:
vertex_credentials = json.load(file)
# Convert to JSON string
vertex_credentials_json = json.dumps(vertex_credentials)
messages = [
{
"role": "user",
"content": """
List 5 popular cookie recipes.
Using this JSON schema:
Recipe = {"recipe_name": str}
Return a `list[Recipe]`
"""
}
]
completion(model="vertex_ai_beta/gemini-1.5-flash-preview-0514", messages=messages, response_format={ "type": "json_object" })
Pre-requisites​
pip install google-cloud-aiplatform
(pre-installed on proxy docker image)Authentication:
run
gcloud auth application-default login
See Google Cloud DocsAlternatively you can set
GOOGLE_APPLICATION_CREDENTIALS
Here's how: Jump to Code
- Create a service account on GCP
- Export the credentials as a json
- load the json and json.dump the json as a string
- store the json string in your environment as
GOOGLE_APPLICATION_CREDENTIALS
Sample Usage​
import litellm
litellm.vertex_project = "hardy-device-38811" # Your Project ID
litellm.vertex_location = "us-central1" # proj location
response = litellm.completion(model="gemini-pro", messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}])
Usage with LiteLLM Proxy Server​
Here's how to use Vertex AI with the LiteLLM Proxy Server
Modify the config.yaml
- Different location per model
- One location all vertex models
Use this when you need to set a different location for each vertex model
model_list:
- model_name: gemini-vision
litellm_params:
model: vertex_ai/gemini-1.0-pro-vision-001
vertex_project: "project-id"
vertex_location: "us-central1"
- model_name: gemini-vision
litellm_params:
model: vertex_ai/gemini-1.0-pro-vision-001
vertex_project: "project-id2"
vertex_location: "us-east"Use this when you have one vertex location for all models
litellm_settings:
vertex_project: "hardy-device-38811" # Your Project ID
vertex_location: "us-central1" # proj location
model_list:
-model_name: team1-gemini-pro
litellm_params:
model: gemini-proStart the proxy
$ litellm --config /path/to/config.yaml
Send Request to LiteLLM Proxy Server
- OpenAI Python v1.0.0+
- curl
import openai
client = openai.OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
base_url="http://0.0.0.0:4000" # litellm-proxy-base url
)
response = client.chat.completions.create(
model="team1-gemini-pro",
messages = [
{
"role": "user",
"content": "what llm are you"
}
],
)
print(response)curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "team1-gemini-pro",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}'
Specifying Safety Settings​
In certain use-cases you may need to make calls to the models and pass safety settigns different from the defaults. To do so, simple pass the safety_settings
argument to completion
or acompletion
. For example:
- SDK
- Proxy
response = completion(
model="vertex_ai/gemini-pro",
messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}]
safety_settings=[
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE",
},
]
)
Option 1: Set in config
model_list:
- model_name: gemini-experimental
litellm_params:
model: vertex_ai/gemini-experimental
vertex_project: litellm-epic
vertex_location: us-central1
safety_settings:
- category: HARM_CATEGORY_HARASSMENT
threshold: BLOCK_NONE
- category: HARM_CATEGORY_HATE_SPEECH
threshold: BLOCK_NONE
- category: HARM_CATEGORY_SEXUALLY_EXPLICIT
threshold: BLOCK_NONE
- category: HARM_CATEGORY_DANGEROUS_CONTENT
threshold: BLOCK_NONE
Option 2: Set on call
response = client.chat.completions.create(
model="gemini-experimental",
messages=[
{
"role": "user",
"content": "Can you write exploits?",
}
],
max_tokens=8192,
stream=False,
temperature=0.0,
extra_body={
"safety_settings": [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE",
},
],
}
)
Set Vertex Project & Vertex Location​
All calls using Vertex AI require the following parameters:
- Your Project ID
import os, litellm
# set via env var
os.environ["VERTEXAI_PROJECT"] = "hardy-device-38811" # Your Project ID`
### OR ###
# set directly on module
litellm.vertex_project = "hardy-device-38811" # Your Project ID`
- Your Project Location
import os, litellm
# set via env var
os.environ["VERTEXAI_LOCATION"] = "us-central1 # Your Location
### OR ###
# set directly on module
litellm.vertex_location = "us-central1 # Your Location
Anthropic​
Model Name | Function Call |
---|---|
claude-3-opus@20240229 | completion('vertex_ai/claude-3-opus@20240229', messages) |
claude-3-sonnet@20240229 | completion('vertex_ai/claude-3-sonnet@20240229', messages) |
claude-3-haiku@20240307 | completion('vertex_ai/claude-3-haiku@20240307', messages) |
Usage​
- SDK
- Proxy
from litellm import completion
import os
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = ""
model = "claude-3-sonnet@20240229"
vertex_ai_project = "your-vertex-project" # can also set this as os.environ["VERTEXAI_PROJECT"]
vertex_ai_location = "your-vertex-location" # can also set this as os.environ["VERTEXAI_LOCATION"]
response = completion(
model="vertex_ai/" + model,
messages=[{"role": "user", "content": "hi"}],
temperature=0.7,
vertex_ai_project=vertex_ai_project,
vertex_ai_location=vertex_ai_location,
)
print("\nModel Response", response)
1. Add to config
model_list:
- model_name: anthropic-vertex
litellm_params:
model: vertex_ai/claude-3-sonnet@20240229
vertex_ai_project: "my-test-project"
vertex_ai_location: "us-east-1"
- model_name: anthropic-vertex
litellm_params:
model: vertex_ai/claude-3-sonnet@20240229
vertex_ai_project: "my-test-project"
vertex_ai_location: "us-west-1"
2. Start proxy
litellm --config /path/to/config.yaml
# RUNNING at http://0.0.0.0:4000
3. Test it!
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "anthropic-vertex", # 👈 the 'model_name' in config
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}'
Model Garden​
Model Name | Function Call |
---|---|
llama2 | completion('vertex_ai/<endpoint_id>', messages) |
Using Model Garden​
from litellm import completion
import os
## set ENV variables
os.environ["VERTEXAI_PROJECT"] = "hardy-device-38811"
os.environ["VERTEXAI_LOCATION"] = "us-central1"
response = completion(
model="vertex_ai/<your-endpoint-id>",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
Gemini Pro​
Model Name | Function Call |
---|---|
gemini-pro | completion('gemini-pro', messages) , completion('vertex_ai/gemini-pro', messages) |
Gemini Pro Vision​
Model Name | Function Call |
---|---|
gemini-pro-vision | completion('gemini-pro-vision', messages) , completion('vertex_ai/gemini-pro-vision', messages) |
Gemini 1.5 Pro (and Vision)​
Model Name | Function Call |
---|---|
gemini-1.5-pro | completion('gemini-1.5-pro', messages) , completion('vertex_ai/gemini-1.5-pro', messages) |
gemini-1.5-flash-preview-0514 | completion('gemini-1.5-flash-preview-0514', messages) , completion('vertex_ai/gemini-1.5-flash-preview-0514', messages) |
gemini-1.5-pro-preview-0514 | completion('gemini-1.5-pro-preview-0514', messages) , completion('vertex_ai/gemini-1.5-pro-preview-0514', messages) |
Using Gemini Pro Vision​
Call gemini-pro-vision
in the same input/output format as OpenAI gpt-4-vision
LiteLLM Supports the following image types passed in url
- Images with Cloud Storage URIs - gs://cloud-samples-data/generative-ai/image/boats.jpeg
- Images with direct links - https://storage.googleapis.com/github-repo/img/gemini/intro/landmark3.jpg
- Videos with Cloud Storage URIs - https://storage.googleapis.com/github-repo/img/gemini/multimodality_usecases_overview/pixel8.mp4
- Base64 Encoded Local Images
Example Request - image url
- Images with direct links
- Local Base64 Images
import litellm
response = litellm.completion(
model = "vertex_ai/gemini-pro-vision",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
}
}
]
}
],
)
print(response)
import litellm
def encode_image(image_path):
import base64
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
image_path = "cached_logo.jpg"
# Getting the base64 string
base64_image = encode_image(image_path)
response = litellm.completion(
model="vertex_ai/gemini-pro-vision",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64," + base64_image
},
},
],
}
],
)
print(response)
Usage - Function Calling​
LiteLLM supports Function Calling for Vertex AI gemini models.
from litellm import completion
import os
# set env
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = ".."
os.environ["VERTEX_AI_PROJECT"] = ".."
os.environ["VERTEX_AI_LOCATION"] = ".."
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
response = completion(
model="vertex_ai/gemini-pro-vision",
messages=messages,
tools=tools,
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
Chat Models​
Model Name | Function Call |
---|---|
chat-bison-32k | completion('chat-bison-32k', messages) |
chat-bison | completion('chat-bison', messages) |
chat-bison@001 | completion('chat-bison@001', messages) |
Code Chat Models​
Model Name | Function Call |
---|---|
codechat-bison | completion('codechat-bison', messages) |
codechat-bison-32k | completion('codechat-bison-32k', messages) |
codechat-bison@001 | completion('codechat-bison@001', messages) |
Text Models​
Model Name | Function Call |
---|---|
text-bison | completion('text-bison', messages) |
text-bison@001 | completion('text-bison@001', messages) |
Code Text Models​
Model Name | Function Call |
---|---|
code-bison | completion('code-bison', messages) |
code-bison@001 | completion('code-bison@001', messages) |
code-gecko@001 | completion('code-gecko@001', messages) |
code-gecko@latest | completion('code-gecko@latest', messages) |
Embedding Models​
Usage - Embedding​
import litellm
from litellm import embedding
litellm.vertex_project = "hardy-device-38811" # Your Project ID
litellm.vertex_location = "us-central1" # proj location
response = embedding(
model="vertex_ai/textembedding-gecko",
input=["good morning from litellm"],
)
print(response)
Supported Embedding Models​
All models listed here are supported
Model Name | Function Call |
---|---|
text-embedding-004 | embedding(model="vertex_ai/text-embedding-004", input) |
text-multilingual-embedding-002 | embedding(model="vertex_ai/text-multilingual-embedding-002", input) |
textembedding-gecko | embedding(model="vertex_ai/textembedding-gecko", input) |
textembedding-gecko-multilingual | embedding(model="vertex_ai/textembedding-gecko-multilingual", input) |
textembedding-gecko-multilingual@001 | embedding(model="vertex_ai/textembedding-gecko-multilingual@001", input) |
textembedding-gecko@001 | embedding(model="vertex_ai/textembedding-gecko@001", input) |
textembedding-gecko@003 | embedding(model="vertex_ai/textembedding-gecko@003", input) |
text-embedding-preview-0409 | embedding(model="vertex_ai/text-embedding-preview-0409", input) |
text-multilingual-embedding-preview-0409 | embedding(model="vertex_ai/text-multilingual-embedding-preview-0409", input) |
Advanced Use task_type
and title
(Vertex Specific Params)​
👉 task_type
and title
are vertex specific params
LiteLLM Supported Vertex Specific Params
auto_truncate: Optional[bool] = None
task_type: Optional[Literal["RETRIEVAL_QUERY","RETRIEVAL_DOCUMENT", "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING", "QUESTION_ANSWERING", "FACT_VERIFICATION"]] = None
title: Optional[str] = None # The title of the document to be embedded. (only valid with task_type=RETRIEVAL_DOCUMENT).
Example Usage with LiteLLM
response = litellm.embedding(
model="vertex_ai/text-embedding-004",
input=["good morning from litellm", "gm"]
task_type = "RETRIEVAL_DOCUMENT",
dimensions=1,
auto_truncate=True,
)
Image Generation Models​
Usage
response = await litellm.aimage_generation(
prompt="An olympic size swimming pool",
model="vertex_ai/imagegeneration@006",
vertex_ai_project="adroit-crow-413218",
vertex_ai_location="us-central1",
)
Generating multiple images
Use the n
parameter to pass how many images you want generated
response = await litellm.aimage_generation(
prompt="An olympic size swimming pool",
model="vertex_ai/imagegeneration@006",
vertex_ai_project="adroit-crow-413218",
vertex_ai_location="us-central1",
n=1,
)
Extra​
Using GOOGLE_APPLICATION_CREDENTIALS
​
Here's the code for storing your service account credentials as GOOGLE_APPLICATION_CREDENTIALS
environment variable:
def load_vertex_ai_credentials():
# Define the path to the vertex_key.json file
print("loading vertex ai credentials")
filepath = os.path.dirname(os.path.abspath(__file__))
vertex_key_path = filepath + "/vertex_key.json"
# Read the existing content of the file or create an empty dictionary
try:
with open(vertex_key_path, "r") as file:
# Read the file content
print("Read vertexai file path")
content = file.read()
# If the file is empty or not valid JSON, create an empty dictionary
if not content or not content.strip():
service_account_key_data = {}
else:
# Attempt to load the existing JSON content
file.seek(0)
service_account_key_data = json.load(file)
except FileNotFoundError:
# If the file doesn't exist, create an empty dictionary
service_account_key_data = {}
# Create a temporary file
with tempfile.NamedTemporaryFile(mode="w+", delete=False) as temp_file:
# Write the updated content to the temporary file
json.dump(service_account_key_data, temp_file, indent=2)
# Export the temporary file as GOOGLE_APPLICATION_CREDENTIALS
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = os.path.abspath(temp_file.name)
Using GCP Service Account​
Trying to deploy LiteLLM on Google Cloud Run? Tutorial here
- Figure out the Service Account bound to the Google Cloud Run service
Get the FULL EMAIL address of the corresponding Service Account
Next, go to IAM & Admin > Manage Resources , select your top-level project that houses your Google Cloud Run Service
Click Add Principal
- Specify the Service Account as the principal and Vertex AI User as the role
Once that's done, when you deploy the new container in the Google Cloud Run service, LiteLLM will have automatic access to all Vertex AI endpoints.
s/o @Darien Kindlund for this tutorial